Synthetic, lab-grown, artisan-created, man-made, or cultured. Whatever you choose to call them, lab-grown diamonds are highly controversial these days, and the diamond media reports regularly on new developments in this growing industry. Whether you like it or not, lab-grown diamonds are not going away, and the technology used to grow them is improving rapidly. As with any product or service, when there is demand for something, companies will continue to enter the marketplace to provide the supply to meet that demand. The demand for lab-grown diamonds is growing in some of the major diamond-consuming nations, but not in others. In my next series of articles, I will take an in-depth look at the burgeoning phenomenon of lab-grown diamonds. I’ll examine their history, how they are made, and their applications. I’ll also discuss how the natural diamond market is reacting to them, how the supply/demand fundamentals are shaping up, and how they are currently being priced in the market.
While we tend to think about lab-grown diamonds primarily in the context of the gem and jewelry industry, the truth is that scientists and product engineers are looking for new ways to make diamonds that can be used in other industrial and medical applications. Imagine car paint infused with diamonds so it can’t be scratched, or nanoclusters of diamonds that can deliver chemotherapy drugs directly to the cells without the negative effects of today’s delivery agents. Although we commonly hear about two primary methods for growing diamonds, namely High-Pressure, High Temperature (HPHT) and Chemical Vapor Deposition (CVD), scientists have successfully found other ways to manufacture diamonds in a laboratory.
Ever since the 1797 discovery that diamond is a pure form of carbon, scientists have been working on and theorizing ways to manufacture them from more abundant forms of carbon. In 1911, science fiction writer H. G. Wells described the concept of synthetic diamonds in a short story titled “The Diamond Maker”. James Ballantyne and Ferdinand Frédéric Henri Moissan reported the earliest written accounts of attempts to manufacture diamonds, in 1879 and 1893, respectively. Hanney reported that he heated charcoal to temperatures above 3500°F, along with iron, inside a crucible furnace. The rapid cooling of iron created the high pressure needed in addition to the heat already supplied.
Moissan, on the other hand, was first turned onto the idea after the discovery of small diamonds in a meteorite crater in Arizona. He used his newly-invented electric arc furnace, in which an electric arc was struck between carbon rods inside a block of lime. While Moissan believed that he had discovered a new way to grow diamonds, he had actually created a new material that was made of silicon carbide, and not a diamond. Moissanite, the gemstone that Moissan unknowingly created, still bears his name today. He was awarded the Nobel Prize in Chemistry in 1906.
Photo © Courtesy of Laboratoire Français de Gemmologie